A groforestry for Degraded Landscapes

Forests grow and their biomass increases; they absorb carbon from the atmosphere and store it in plant tissue. Understanding the biomass of forest vegetation is essential for determining the storage of carbon in the dominant tree component and computing carbon cycling at a regional as well as global level. This book consisting of five chapters will give a comprehensive understanding of biomass production vis-à-vis carbon storage in relation to litter and nutrient dynamics of the forest by analyzing the mode and magnitude of biomass production and carbon storage as a function of various silvicultural factors.
Carbon Stocks and Sequestration Potential in Agroforestry System

My research is oriented towards investigating carbon sequestration potential of few important multipurpose tree species through physiological behavior of plants and biochemical activity at its seedling stage. To support this finding, carbon isotope discrimination study was carried out to explore the efficiency of the selected multipurpose tree species. The trees which were examined are significant components of Agroforestry and plantation forestry in the study region.

Environmental Amelioration Potential of Silvopastoral Agroforestry Systems of Spain

Discover the latest available knowledge on ways to reduce CO2 in the atmosphere! The problem of quickly mounting CO2 emissions in the fast-developing Latin American region was addressed in a symposium held in Piracicaba, Brazil, in June 2004. Carbon Sequestration in Soils of Latin America presents the latest available knowledge in soil C sequestration and improved land and soil management which can also lead to other positive effects, such as greater fertility of soil and higher crop yields. This text, in easy-to-understand language, comprehensively reviews ways to best transform various soils from being a source of carbon released into the atmosphere to become a sink for carbon absorption. Carbon Sequestration in Soils of Latin America presents a full-rounded explanation of this information in four sections. The first section gives detailed background information about the region, its climate, and the differing soils, along with basic concepts behind the science. The second section describes recommended management practices and rates of soil C sequestration. The third section thoroughly deals with methods of assessment of soil C. The last section provides a summary of recommendations for further research and development. The book is extensively referenced and contains numerous figures, tables, and photographs. Topics in Carbon Sequestration in Soils of Latin America include: soil eco-regions and principal biomes of Latin America soil carbon stock in principal ecosystems of Latin America rates of carbon sequestration in different eco-regions for predominant land use and management the role of the Amazon region in mitigating climate change the importance of tropical savannas of Latin America in mitigating global warming innovative methods of assessment of soil carbon pool trading carbon credits designing pilot soil carbon sequestration projects potential of soil carbon sequestration in Latin America priorities and recommendations for future research Carbon Sequestration in Soils of Latin America is a comprehensive, essential resource for land managers, policymakers, educators, students, and researchers.

Agroforestry Systems

Agricultural systems are no longer evaluated solely on the basis of the food they provide, but also on their capacity to limit impacts on the environment, such as soil conservation, water quality and biodiversity conservation, as well as their contribution to mitigating and adapting to climate change. In order to cope with these multiple service functions, they must internalize the costs and benefits of their environmental impact. Payments for ecosystem services are hoped to encourage and promote sustainable practices via financial incentives. The authors show that while the principle is straightforward, the practice is much more complicated. Whereas scenic beauty and protection of water sources provide benefits to the local population, carbon sequestration and biodiversity conservation can be considered international public goods, rendering potential payment schemes more complex.
Few examples exist where national or international bodies have been able to set up viable mechanisms that compensate agricultural systems for the environmental services they provide. However, this book provides several examples of successful programs, and aims to transfer them to other regions of the world. The authors show that a product can be sold if it is clearly quantified, there exists a means to determine the service's values, and there is a willing buyer. The first two sections of the book present methodological issues related to the quantification and marketing of ecosystem services from agriculture, including agroforestry. The third and final section presents case studies of practical payments for ecosystem services and experiences in Central and South America, and draws some lessons learnt for effective and sustainable development of ecosystem services compensation mechanisms.

Agroforestry - The Future of Global Use

This new book presents an abundance of important information and case studies that deal with bamboo farming and its effects from and on climate change adaptation and mitigation. There is a lack of research on the role of bamboo in climate change adaptation and mitigation; this volume helps to fill that gap by providing information that will enable policymakers to consider bamboo farming and its implications in carbon trading. Bamboo represents one of the world’s highest yielding renewable natural resources and is an important source of non-timber forest products for subsistence use as well as for materials with many commercial and industrial uses. There are over 1500 documented applications of bamboo products, including materials for bridges, construction, furniture, agricultural tools, handicrafts, papers, textiles, boards, edible, and bioenergy applications. With their fast growth rate and rapid propagation, bamboo forests have a high C storage potential, especially when the harvested culms are transformed into durable products and thereby prolonging the C storage. Environmentalists love bamboo for its quick growth and for the fact that it can be harvested without harming the environment. This volume is a rich resource on the role of bamboo in ecological farming and climate change mitigation. Key features of the book include: • Explores the role of bamboo on climate change and environment and ecosystem-based adaptation to climate change • Considers overlooked bamboo biomass resources • Explains carbon capture and storage potential in bamboo • Assesses opportunities for carbon farming and carbon trading in bamboo • Looks at the role on bamboo cultivation on the livelihood of rural populations • Details the soil properties needed for bamboo-based agroforestry systems

The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect

Much attention has been given to above ground biomass and its potential as a carbon sink, but in a mature forest ecosystem 40 to 60 percent of the stored carbon is below ground. As increasing numbers of forests are managed in a wide diversity of climates and soils, the importance of forest soils as a potential carbon sink grows. The Potential for Agroforestry Adoption and Carbon Sequestration in Smallholder Agroecosystems of Malawi

With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution. Agriculture is rightly blamed as a major culprit of our climate crisis. But in this groundbreaking new book, Eric Toensmeier argues that agriculture—specifically, the subset of practices...
known as “carbon farming”— can, and should be, a linchpin of a global climate solutions platform. Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in aboveground biomass. Combined with a massive reduction in fossil fuel emissions— and in concert with adaptation strategies to our changing environment— carbon farming has the potential to bring us back from the brink of disaster and return our atmosphere to the “magic number” of 350 parts per million of carbon dioxide. Toensmeier’s book is the first to bring together these powerful strategies in one place, including in-depth analysis of the available research and, where research is lacking, a discussion of what it will take to get us there.

Carbon farming can take many forms. The simplest practices involve modifications to annual crop production. Although many of these modifications have relatively low sequestration potential, they are widely applicable and easily adopted, and thus have excellent potential to mitigate climate change if practiced on a global scale. Likewise, grazing systems such as silvopasture are easily replicable, don’t require significant changes to human diet, and— given the amount of agricultural land worldwide that is devoted to pasture— can be important strategies in the carbon farming arsenal. But by far, agroforestry practices and perennial crops present the best opportunities for sequestration. While many of these systems are challenging to establish and manage, and would require us to change our diets to new and largely unfamiliar perennial crops, they also offer huge potential that has been almost entirely ignored by climate crusaders. Many of these carbon farming practices are already implemented globally on a scale of millions of hectares. These are not minor or marginal efforts, but win-win solutions that provide food, fodder, and feedstocks while fostering community self-reliance, creating jobs, protecting biodiversity, and repairing degraded land— all while sequestering carbon, reducing emissions, and ultimately contributing to a climate that will remain amenable to human civilization. Just as importantly to a livable future, these crops and practices can contribute to broader social goals such as women’s empowerment, food sovereignty, and climate justice. The Carbon Farming Solution does not present a prescription for how cropland should be used and is not, first and foremost, a how-to manual, although following up on references in a given section will frequently provide such information. Instead, The Carbon Farming Solution is— at its root— a toolkit. It is the most complete collection of climate-friendly crops and practices currently available. With this toolkit, farmers, communities, and governments large and small, can successfully launch carbon farming projects with the most appropriate crops and practices to their climate, locale, and socioeconomic needs. Toensmeier’s ultimate goal is to place carbon farming firmly in the center of the climate solutions platform, alongside clean solar and wind energy. With The Carbon Farming Solution, Toensmeier wants to change the discussion, impact policy decisions, and steer mitigation funds to the research, projects, and people around the world who envision a future where agriculture becomes the protagonist in this fraught, urgent, and unprecedented drama of our time.

Citizens, farmers, and funders will be inspired to use the tools presented in this important new book to transform degraded lands around the world into productive carbon-storing landscapes.

Rubber Plantations and Carbon M anagement

This book discusses different strategies that can be adopted by agriculture and industry to enhance CO2 sequestration and reduce the impacts of global warming and climate change. Written by researchers from different fields, chapters cover such topics as the management of agricultural systems with the implementation of agronomic practices that can reduce greenhouse gas emissions and increase soil carbon stocks, the technology of adsorption on activated carbon from low-cost raw material, and the effective methods of carbon capture and storage, among others. This volume is a useful reference for the general public, undergraduate and graduate students, and researchers who aim to deepen their knowledge of those topics.
Carbon Sequestration Potential of Agroforestry Systems

Planting trees in the agricultural landscape, in the form of establishing agroforestry systems, has a significant role to play in potentially improving ecosystem services, such as increased biodiversity, reduced soil erosion, increased soil carbon storage, improved food security and nutrition, and reduced greenhouse gas emissions. While the role of trees in agroforestry systems in improving ecosystem services has been researched, studies in new systems/regions and new agroforestry system designs are still emerging. This Special Issue includes selected papers presented at the 4th World Congress on Agroforestry, Montpellier, France 20–22 May 2019, and other volunteer papers. The scope of articles includes all aspects of agroforestry systems.

The Potential for Agroforestry Adoption and Carbon Sequestration in Smallholder Agroecosystems of Malawi

A comprehensive book on basic processes of soil C dynamics and the underlying factors and causes which determine the technical and economic potential of soil C sequestration. The book provides information on the dynamics of both inorganic (lithogenic and pedogenic carbonates) and organic C (labile, intermediate and passive). It describes different types of agroecosystems, and lists questions at the end of each chapter to stimulate thinking and promote academic dialogue. Each chapter has a bibliography containing up-to-date references on the current research, and provides the state-of-the-knowledge while also identifying the knowledge gaps for future research. The critical need for restoring C stocks in world soils is discussed in terms of provisioning of essential ecosystem services (food security, carbon sequestration, water quality and renewability, and biodiversity). It is of interest to students, scientists, and policy makers.

Sustainable Agriculture, Forest and Environmental Management

Agroforestry, the word coined in early seventies, has made its place in all the developed and the developing countries of the world and is now recognized as an important approach to ensuring food security and rebuilding resilient rural environments. India has been an all-time leader in agroforestry. The South and Southeast Asia region comprising India is often described as the cradle of agroforestry. Almost all forms of agroforestry systems exist across India in ecozones ranging from humid tropical lowlands to high-altitude and temperate biomes, and perhumid rainforest zones to parched drylands. The country ranks foremost among the community of nations not only in terms of this enormous diversity and long tradition of the practice of agroforestry, but also in fostering scientific developments in the subject. A agroforestry applies to private agricultural and forest lands and communities that also include highly erodible, flood-prone, economically marginal and environmentally sensitive lands. The typical situation is agricultural, where trees are added to create desired benefits. A agroforestry allows for the diversification of farm activities and makes better use of environmental resources. Owing to an increase in the population of human and cattle, there is increasing demand of food as well as fodder, particularly in developing countries like India. So far, there is no policy that deals with specifics in agroforestry in India. But, the Indian Council of Agricultural Research has been
discussing on the scope of having a National Agroforestry Policy in appropriate platforms. However, evolving a policy requires good and reliable datasets from different corners of the country on the subject matter. This synthesis volume containing 13 chapters is an attempt to collate available information in a classified manner into different system ecologies, problems and solutions, and converging them into a policy support.

Forestry as a Response to Global Warming

Carbon Sequestration Potential of Agroforestry Systems

Introduction; The greenhouse effect and global warming policy; The market for emission reductions; Accounting for carbon sequestration; A model of project participation; Analysis of project design; Farm heterogeneity and other issues affecting project feasibility; Conclusions.

Carbon Sequestration Potential of Agroforestry Practices in the L’Ormière River Watershed in Québec

Carbon Sequestration in Soils of Latin America

Carbon Sequestration in Agricultural Ecosystems

During the last decades, soil organic carbon (SOC) attracted the attention of a much wider array of specialists beyond agriculture and soil science, as it was proven to be one of the most crucial components of the earth’s climate system, which has a great potential to be managed by humans. Soils as a carbon pool are one of the key factors in several Sustainable Development Goals, in particular Goal 15, “Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification and halt and reverse land degradation and halt biodiversity loss” with the SOC stock being explicitly cited in Indicator 15.3.1. This technical manual is the first attempt to gather, in a standardized format, the existing data on the impacts of the main soil management practices on SOC content in a wide array of environments, including the advantages, drawbacks and constraints. This manual presents different sustainable soil management (SSM) practices at different scales and in different contexts, supported by case studies that have been shown with quantitative data to have a positive effect on SOC stocks and successful experiences of SOC sequestration in practical field applications. Volume 3 includes a total of 49 practices that have a direct impact on SOC sequestration and maintenance in cropland, grassland, integrated systems and farming approaches.

The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect
Author's abstract: Global climate change is the biggest environmental challenge of this century. Potential climate change adaptation and mitigation strategies are to replace fossil fuels with bioenergy sources that have near-zero net CO2 emission and to utilize practices that promote carbon sequestration. This study assesses the soil carbon sequestration and bioenergy production potentials of switchgrass (Panicum virgatum) and longleaf pine (Pinus palustris) agroforestry systems in the southeastern coastal plain. Switchgrass has high biomass yield potential under low nutritional and management requirements and longleaf pine is a common native tree species in the southeastern coastal plain. The primary goal of this study was to establish a first-year rotation of switchgrass amongst three fertilizer treatments across four stands of longleaf pine to assess biomass production, carbon sequestration, and isotopic identification of soil carbon sources (C3 vs C4 plants). The three fertilizer treatments were no fertilizer, inorganic, and organic. The N:P:K ratio for both inorganic and organic fertilizers were 11:2:2. Inorganic fertilizer resulted highest yield of switchgrass under the agroforestry systems compared to the monoculture stands of switchgrass. The comparison between before and after study soil carbon stocking did not show any significant carbon sequestration in the study plots. The isotopic analysis revealed that the predominant carbon source came from C3 plant (pine) contributions, probably a result of pine timber practices that were established at the field sites for many years prior to the study. The presence of longleaf pine artificial stands may have favored the establishment of switchgrass when compared to monoculture planting. Since no carbon was sequestered within the one year timeframe, an extended study needs to be conducted for further insight on how much carbon can be sequestered over multiple seasons of implementing this practice.

Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

Get cutting-edge agroforestry research and data. Deforestation and the rampant use of fossil fuels are major contributors to increases in atmospheric carbon dioxide and are enormous influences on global warming. Agroforestry systems and tree plantations can help mitigate the resulting climate change and degradation of biodiversity and accelerating climate change. Environmental Services of Agroforestry Systems addresses these global concerns with an essential collection of presentations on biodiversity and climate change from the First World Congress in Agroforestry (Orlando, Florida, 2004). Respected experts discuss the latest research and data on how agroforestry systems can help solve environmental problems through carbon sequestration and biodiversity conservation. Years ago, agroforestry’s environmental benefits were mainly seen as being soil amelioration, erosion control, microclimate control, and the alleviation of the effects of drought in semiarid areas. Environmental Services of Agroforestry Systems goes beyond the regional considerations of years past to focus on the challenges of today’s most pressing global environmental concerns. The contributors describe the latest research and concepts in agroforestry systems, reforestation efforts, soils, vegetation, and agriculture while reviewing their economic aspects. Incentives for reforestation and agroforestry are explored in detail. Each chapter is carefully referenced and includes tables to clarify ideas and data. Environmental Services of Agroforestry Systems addresses: advantages of mixed-species plantations tropical pasture and silvo-pastoral systems tropical forest ecosystem management research on the economic feasibility of various land-use systems socio-economic considerations of coffee-growing ecosystems agroforestry systems in Costa Rica Environmental Services of Agroforestry Systems is essential reading for researchers and scientists, as well as professionals in agroforestry, forestry, soils, global change, climate change, and environmental studies, educators, and graduate and undergraduate students.
Ecosystem Services from Agriculture and Agroforestry

The recent technologies for sustainable development and maintaining ecological integrity in the field of agriculture, forestry and environmental management for the green future. Describes the recent technologies and issues to generate awareness among the global scientific community towards sustainable development. Covers various eco-friendly approaches for successful management of soil, water, forest, agriculture, and other natural resources. Addresses the policy issues promoting conservation, protection and management of various natural resources. Presents the issues of climate change and sustainable strategies to combat such a mega event. The existence of life on the earth primarily depends upon the agriculture, forest and environment. The changing climate is imposing the multifaceted challenges in front of human civilization. The agroecosystem management practices and technologies leads to higher productivity with destruction of agricultural, forest and environmental habitat leading to soil-water-air pollution. Food and Agriculture Organization (FAO) plays a key role in the promoting research and developmental activities in various sectors to achieve the sustainable development goals under 2030 agenda. Gradual growth of science and technology has imposed a significant pressure on the different ecosystem. In this context, approaches such as sustainable agriculture, forestry and eco-friendly technologies need to be address across the world. Keeping view of these facts this book underlines scientific chapters dealing with the issues with proper explanation, and accompanied by illustrative diagrams, tables, database as required. The editors have tried to provide a brief scenario about the current issues related to the agriculture, forestry and environment. Therefore, the book would be a very useful resource for academicians, scientists, and policy makers of the related field.

The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia

Agroforestry and Climate Change

Carbon Sequestration in Multipurpose Tree Species at Seedling Stage

ABSTRACT: This study investigates the environmental amelioration potential for silvopasture agroforestry systems of Spain to store and retain soil carbon (C) and phosphorus (P). Interest in C has grown due to its role in affecting global climate. Fertilizer P from can become an environmental pollutant when applied in excess of a soil's storage capacity. To assess soil C and P retention in Spain, two study sites with were selected: a "Dehesa" silvopasture planted with cork oak (alba) Soils underneath trees and in adjacent open pastures were sampled to 100 cm, wet sieved into four size classes (53 [μm], 53-250 [μm], 250-2000 [μm], and 2000 [μm]), and combusted for C determination. Potential for P contamination was assessed using the Phosphorus Saturation Ratio (PSR) and Soil Phosphorus Storage Capacity.
Carbon Sequestration Potential of Agroforestry Systems in the West African Sahel

Much attention has been given to above ground biomass and its potential as a carbon sink, but in a mature forest ecosystem 40 to 60 percent of the stored carbon is below ground. As increasing numbers of forests are managed in a wide diversity of climates and soils, the importance of forest soils as a potential carbon sink grows. The Potential

CO2 Sequestration

Conservation agriculture is a sustainable production model that not only optimizes crop yields, but also reaps economic and environmental benefits as well. The adoption of successful conservation agriculture methods has resulted in energy savings, higher organic matter content and biotic activity in soil, increased crop-water availability and thus resilience to drought, improved recharge of aquifers, less erosion, and reduced impacts from the weather associated with climate change in general. Applied Agricultural Practices for Mitigating Climate Change examines several important aspects of crop production, such as the use of microorganisms and biofertilizers as well as GIS and Remote Sensing applications. It presents the latest techniques in crop modeling, best practices for irrigation under water deficit conditions, and other approaches for sustainable conservation agriculture that consider the environmental effects of climate change. Features: Examines the effects of climate change on agriculture and the related strategies for mitigation through practical, real-world examples Explores innovative on-farm technology options to increase system efficiency resulting in improved water usage Presents examples of precision farming using climate-resilient technologies

Modelling Biomass and Carbon Sequestration Potential in Poplar (Populus Deltoides) and Eucalypts (Eucalyptus Tereticornis) Based Agroforestry Systems [With CD Copy]

This volume provides an abundance of valuable information on emerging eco-friendly technology and its potential role in combating climate change via agroforestry. The volume begins by describing the recent understanding of the scenario of climate change and its issues and challenges and provides an in-depth analysis of the potential of agroforestry toward climate change mitigation and adaptation. Chapters address a wide range of techniques and methods for mitigating the negative aspects of climate change through agroforestry, such as vermicomposting, carbon sequestration, horticulture techniques, nutrient sequestration and soil sustainability, conservation of medicinal plant resources, silvipastoral systems, phytoremediation techniques, and more. The book also looks at livelihood security and the role of agroforestry. Key features: Provides updated information and recent developments in the field of climate change and agroforestry Looks at a variety of eco-friendly methods being employed to help mitigate climate change through agroforestry Provides recommendations and suggestions to build harmony between agroforestry and climate change Discusses new insights on the role of agroforestry toward combating climate change as well as maintaining the sustainability of ecosystems
This volume contains a solid body of the current state of knowledge on the various themes and activities in agroforestry worldwide. It is organized into three sections: the Introduction section consists of the summaries of six keynote speeches at the 2nd World Congress of Agroforestry held in Nairobi, Kenya, in 2009; that is followed by two sections of peer-reviewed thematic chapters grouped as “Global Perspectives” (seven chapters) and “Regional Perspectives” (eleven chapters), authored by professional leaders in their respective agroforestry-related fields worldwide. A total of 130 professionals from institutions in 33 countries in both developing and the industrialized temperate regions of the world contributed to the book as chapter authors and/or reviewers. Thus, the book presents a comprehensive and authoritative account of the global picture of agroforestry today.

Appraisal of Agroforestry Land Use Systems for Their Carbon Sequestration Potential

This book looks at using forestry and several other innovative measures to facilitate environmental sustainability, covering an important selection of research that focuses on scientific applications and trends. Chapters discuss such diverse topics as using agroforestry for resource management, employing legumes in agroforestry, livestock management for climate change mitigation, introducing higher plants for air pollution mitigation in urban industrial areas, the uses and benefits of sludge, technological assessment of sewage treatment plants, and much more. This book will be a helpful and informative reference for those in the disciplines of forestry, agriculture, ecology, and environmental science and will also be a pathway to addressing new concepts for a sustainable world.

Forest Biomass and Carbon

Assessment of Tree Diversity, Productivity and Carbon Sequestration Potential of Different Agroforestry Systems

This book presents various aspects of agroforestry research and development, as well as the latest trends in degraded landscape management. Over the last four decades, agroforestry research (particularly on degraded landscapes) has evolved into an essential problem-solving science, e.g. in terms of sustaining agricultural productivity, improving soil health and biodiversity, enhancing ecosystem services, supporting carbon sequestration and mitigating climate change. This book examines temperate and tropical agroforestry systems around the world, focusing on traditional and modern practices and technologies used to rehabilitate degraded lands. It covers the latest research advances, trends and challenges in the utilization and reclamation of degraded lands, e.g. urban and peri-urban agroforestry, reclamation of degraded landscapes, tree-based multi-enterprise agriculture, domestication of high-value halophytes, afforestation of coastal areas, preserving mangroves and much more. Given its scope, the book offers a valuable asset for a broad range of stakeholders including farmers, scientists, researchers, educators, students, development/extension agents, environmentalists, policy/decision makers, and government and non-government organizations.
This new volume addresses the burning issues of the impact of climate change, the alteration of environmental quality, and subsequent mitigation and adaptation strategies through various agroecosystem practices, primarily in agroforestry. The book discusses in depth the impact of climate change on forests and other agroecosystems. It presents new research on mitigation strategies, looking at carbon sequestration in agricultural soils, environmental greening, natural resource management, and livelihood security. It provides a thorough analysis of the potential of various modern, improved, and scientific farming practices, such as climate-smart agriculture and agroforestry systems for climate change mitigation and adaptation. The book also examines the invasion of major fungal diseases in forests and agricultural crops due to climatic fluctuations and goes on to look at water and waste management practices.

Climate Change and Agroforestry Systems

Tree based production systems abound especially in the tropics. Despite the pervasiveness of such multipurpose “trees-outside-forest” resources, they have not attracted adequate attention in the development paradigms of many nation states. These multispecies production systems impact the ecosystem processes favourably. Yet, our understanding of the diversity attributes and carbon dynamics under agroforestry is not adequate. This book focuses on the role of multispecies production systems involving tree and crop species as a means for carbon sequestration and thereby reduce atmospheric carbon dioxide levels. Sixteen chapters organized into three broad sections titled: Measurement and Estimation, Agrobiodiversity and Tree Management, and Policy and Socioeconomic Aspects represent a cross section of the opportunities and challenges in current research and emerging issues in harnessing carbon sequestration potential of agroforestry systems.

Carbon Sequestration and Biomass Production Potentials of Switchgrass-pine Agroforestry Systems in the Southeastern Coastal Plain

With the increasing atmospheric carbon dioxide concentration and the resulting environmental consequences for plants, it is necessary to consider the future of rubber plantations, an important source of latex for rubber production. In this volume, the authors explore the ecology of rubber plantations in the context of carbon management under a scenario of our changing climate. The authors provide an in-depth study of the carbon stock and sequestration potentiality of rubber plantations. The volume also provides information on a biomass estimating model that can be used in the future study of non-harvesting biomass estimation for a variety of plants. Key features: • Provides an understanding of the role of rubber plantations in carbon management • Presents biomass models and biomass carbon stocks • Explores the impact of land use changes on soil organic carbon • Looks at ecosystem carbon sequestration • Explores methods of allometric model development for different growth ages of rubber plantations • Advances our
knowledge of the global carbon cycle that will be helpful in studying changing environmental effects on other crops and plant products.

Bamboo

Tree based production systems abound especially in the tropics. Despite the pervasiveness of such multipurpose “trees-outside-forest” resources, they have not attracted adequate attention in the development paradigms of many nation states. These multispecies production systems impact the ecosystem processes favourably. Yet, our understanding of the diversity attributes and carbon dynamics under agroforestry is not adequate. This book focuses on the role of multispecies production systems involving tree and crop species as a means for carbon sequestration and thereby reduce atmospheric carbon dioxide levels. Sixteen chapters organized into three broad sections titled: Measurement and Estimation, Agrobiodiversity and Tree Management, and Policy and Socioeconomic Aspects represent a cross section of the opportunities and challenges in current research and emerging issues in harnessing carbon sequestration potential of agroforestry systems.

Environmental Services of Agroforestry Systems

Large potential for agroforestry as a mitigation option has given rise to scientific and policy questions. This paper addresses methodological issues in estimating carbon sequestration potential, baseline determination, additionality and leakage in Khammam district, Andhra Pradesh, southern part of India. Technical potential for afforestation was determined considering the various landuse options. For estimating the technical potential, culturable wastelands, fallow and marginal croplands were considered for Eucalyptus clonal plantations. Field studies for aboveground and below ground biomass, woody litter and soil organic carbon for baseline and project scenario were conducted to estimate the carbon sequestration potential. The baseline carbon stock was estimated to be 45.33 tC/ha. The additional carbon sequestration potential under the project scenario for 30 years is estimated to be 12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due to biomass burning and fertilizer application. The project scenario though has a higher benefit cost ratio compared to baseline scenario, initial investment cost is high. Investment barrier exists for adopting agroforestry in the district.

Recarbonizing global soils – A technical manual of recommended sustainable soil management

The Carbon Farming Solution

ABSTRACT: In recent years, carbon (C) sequestration potential of agroforestry systems has attracted attention, especially following Kyoto Protocol's recognition of agroforestry as an option for mitigating greenhouse gases. Although the possible benefits of agroforestry in carbon (C) sequestration have been conceptually discussed, field measurements to validate these concepts have not been undertaken to any significant extent. In addition to the traditional agroforestry systems, improved practices and technologies are now being expanded into the dry regions such as the West African Sahel for...
perceived benefits such as arresting desertification, reducing water and wind erosion hazards, and improving biodiversity. Thus, it is imperative to investigate C sequestration potential of agroforestry practices in these regions. My research hypothesizes that the tree-based systems will retain more C in the systems both above- and below-ground than tree-less land-use systems. By joining the C credit market, the landowners could sell the C sequestered in their agroforestry systems. My research consisted of three components. The first examined C (biomass + soil) stored in five target land-use systems: two traditional parkland systems involving Faidherbia albida and Vitellaria paradoxa trees as the dominant species, two improved agroforestry systems (live.

A groforestry and Climate Change

Agroforestry Systems in India: Livelihood Security & Ecosystem Services

Over the past decade the potential of agroforestry systems to sequester carbon and their role in providing ecosystem services has become the forefront of research as a result of global climate change. A groforestry, that unambiguously integrates trees into land use systems, has traditionally contributed to global climate change adaptation. Hence, the promotion of A groforestry is vitally vital to reinforce the resiliency of the country to future global climate change. A groforestry and Climate Change provides a wide-ranging coverage of comprehensive information on emerging eco-friendly technology and its prospective role in contesting climate change through agroforestry. The book starts with highlights three ways agroforestry can be part of a climate change response: adapt to increased risks and uncertainties, facilitate an energy transition, and restoring landscape multifunctionality to allow current human resource appropriation to become sustainable, fitting sustainable development goals within planetary boundaries. Next, this book covers a study that presents how to use local agroecological knowledge in climate change adaptation. Further, this book presents a literature review to shed light on the social, environmental and economic benefits and challenges of using agroforestry systems for the purposes of conservation and restoration. The book also focuses on - carbon revenue in the profitability of agroforestry relative to monocultures; carbon sequestration potential of agroforestry systems in India; estimating carbon storage in windbreak trees on U.S. agricultural lands; agroforestry practices and carbon sequestration cost estimates among forest land dependent households in Nigeria; and reducing subsistence farmers' vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Additionally, the book reviews the literature and discusses the adverse impacts of climate change on agriculture and forestry, the effects of adapting agroforestry on climate changes, and important policies for promoting agroforestry adaptation. Climate change may significantly reduce the productivity of farms globally. Potential impact of climate change on farm productivity is a significant concern given that agriculture represents the primary livelihood strategy for most rural poor in tropical developing countries. In the last, therefore, this book presents contribution of agroforestry to climate change mitigation and livelihoods in developing countries.

Copyright code: b1647ef3cc24967e253312806370b76e